Severe Convective Storm Risk

• Risk dependent on:
 – Frequency and severity of hazard
 – Location relative to hazard
 – Structural vulnerability
 – Portfolio structure and conditions
US Severe Convective Storms
Tornado Statistics

Doppler radar era

Number of Occurrences per Year
US Convective Storms
Hail Statistics

- **Observed max hail size**
 - <1 inch
 - 1-2 inches
 - 2-3 inches
 - 3-4 inches
 - 4-5 inches
 - >5 inches

Bar Chart
- **Number of Days**
- **Year**
 - 1990 - 2014

Pie Chart
- **Month**
 - Jun: 20%
 - Jul: 16%
 - Aug: 12%
 - Sep: 6%
 - Oct: 3%
 - Nov-Jan: 3%
 - Feb: 2%
 - Mar: 6%
 - Apr: 13%
 - May: 19%

Pie Chart Details
- **Mar**: 6%
- **May**: 19%
- **Jun**: 20%
- **Jul**: 16%
- **Aug**: 12%
- **Sep**: 6%
- **Oct**: 3%
- **Nov-Jan**: 3%
- **Feb**: 2%

- **Total Hail Events**: 236
US Annual Insured Losses

$0.5B increase per year on average
US Average Annual Insured Loss by State
1990-2015

![Map showing US Average Annual Insured Loss by State from 1990-2015. The map uses color coding to represent millions of 2015 USD losses. States with higher losses are shaded in darker colors, indicating higher economic impact due to tornadoes.](image-url)
Tornadoes and Hail
Worldwide Statistics

Source: Swiss Re CatNet®.
Worldwide Insured Losses

2014 Swiss Re Sigma Catastrophes

The 20 most costly insurance losses in 2014

<table>
<thead>
<tr>
<th>Insured loss (in USD m)</th>
<th>Victims</th>
<th>Date (start)</th>
<th>Event</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>2935</td>
<td>-</td>
<td>18.05.2014</td>
<td>Severe thunderstorms, large hail</td>
<td>US</td>
</tr>
<tr>
<td>2502</td>
<td>26</td>
<td>08.02.2014</td>
<td>Snow storm</td>
<td>Japan</td>
</tr>
<tr>
<td>2190</td>
<td>6</td>
<td>08.06.2014</td>
<td>Wind and hail storm Ela</td>
<td>France, Germany, Belgium</td>
</tr>
<tr>
<td>1700</td>
<td>6</td>
<td>14.09.2014</td>
<td>Hurricane Odile</td>
<td>Mexico</td>
</tr>
<tr>
<td>1669</td>
<td>21</td>
<td>05.01.2014</td>
<td>Winter storm</td>
<td>US</td>
</tr>
<tr>
<td>1269</td>
<td>2</td>
<td>03.06.2014</td>
<td>Severe thunderstorms, large hail, tornadoes</td>
<td>US</td>
</tr>
<tr>
<td>1220</td>
<td>33</td>
<td>27.04.2014</td>
<td>Thunderstorms, large hail, 83 tornadoes, severe flash floods</td>
<td>US</td>
</tr>
<tr>
<td>1084</td>
<td>-</td>
<td>02.04.2014</td>
<td>Severe storms, large hail, tornadoes</td>
<td>US</td>
</tr>
<tr>
<td>ns</td>
<td>7</td>
<td>15.06.2014</td>
<td>Major fire and explosion at oil refinery</td>
<td>Russia</td>
</tr>
<tr>
<td>905</td>
<td>-</td>
<td>27.09.2014</td>
<td>Thunderstorms with winds up to 108 km/67 miles per hour, hail, flash floods</td>
<td>US</td>
</tr>
<tr>
<td>852</td>
<td>-</td>
<td>30.11.2014</td>
<td>Hailstorm</td>
<td>Australia</td>
</tr>
<tr>
<td>678</td>
<td>-</td>
<td>12.04.2014</td>
<td>Thunderstorms, large hail, tornadoes</td>
<td>US</td>
</tr>
<tr>
<td>ns</td>
<td>-</td>
<td>07.07.2014</td>
<td>Fire at petrochemical plant</td>
<td>US</td>
</tr>
<tr>
<td>635</td>
<td>-</td>
<td>10.05.2014</td>
<td>Thunderstorms, hail, tornadoes, flash floods</td>
<td>US</td>
</tr>
<tr>
<td>632</td>
<td>68</td>
<td>12.10.2014</td>
<td>Cyclone Hudhud</td>
<td>India</td>
</tr>
<tr>
<td>592</td>
<td>-</td>
<td>27.03.2014</td>
<td>Thunderstorms, winds up to 129 km/80 miles per hour, large hail, tornadoes</td>
<td>US</td>
</tr>
<tr>
<td>545</td>
<td>3</td>
<td>14.06.2014</td>
<td>Thunderstorms, >100 tornadoes, hail</td>
<td>US</td>
</tr>
<tr>
<td>539</td>
<td>2</td>
<td>11.08.2014</td>
<td>Torrential rains trigger severe floods</td>
<td>US</td>
</tr>
<tr>
<td>ns*</td>
<td>47</td>
<td>13.07.2014</td>
<td>Fighting at airport destroys aircrafts</td>
<td>Libyan Arab Jamahiriya</td>
</tr>
<tr>
<td>530</td>
<td>-</td>
<td>01.01.2014</td>
<td>Floods</td>
<td>UK</td>
</tr>
</tbody>
</table>

*Not shown.

Severe Convective Storm Risk Modeling
Why is it so difficult?
Basic Cat Modeling Methodology
The four box model approach

Hazard
- Where, how often and how strong?

Exposure
- Where, what and characteristics?

Vulnerability
- What damage degree?

Economics
- Property value
- Contents
- Coverage type
- Expected loss
- What is covered?
Hazard Considerations

• Likelihood of tornado hitting any one point is extremely remote due to localized nature

• Hail swath and tornado path characteristics

• Hail and tornado historical records contain many biases
Exposure Considerations
Damage relative to location and time

- Spatial correlation of damage
- Large wind speed gradient from outer to inner circulation
- Building orientation
Example: Joplin Tornado

Source: US Army Corps of Engineers
Hypothetical Scenario

- 250m wide tornado
- EF2 — winds to 135 mph (60 m/s)
- Moving from WSW to ENE
- Debris impact would be low-moderate
• The most vulnerable areas for this site:
 – upwind-facing windows coinciding with peak pressures on roof
 – lee-side overhead doors

• If envelope compromised then:
 – uplift on roof from inside and out
 – significant content damage
 – greater likelihood of total loss
Exposure Considerations

Building Contents

Exposure Considerations

Business Interruption

Emergency Generator

Building

- 2 substations, 4,000 distribution poles and transmission towers, 1,500 transformers, and 110 miles of transmission/distribution lines
- 50 cell towers downed or destroyed
- 4,000 leaking water lines, 25 broken fire-service lines
- 3,500 gas meters and 55,000ft of gas main damaged

"Ten days after... restored power to all customers who were able to receive service."

Source: NIST (2014)

Source: NOAA
Vulnerability Considerations
Tornadoes vs Straight-line Winds

- Building codes and standards do not include loads from tornado winds
- Stationary vs non-stationary
- Strength of wall-to-roof and wall-to-floor connections

Source: Orwig PhD Dissertation, Examining Strong Winds from a Time-Varying Perspective

Source: NIST report on Joplin tornado
Structural Performance in Tornado Winds
Tilt-Up Panel Walls

• Not only vulnerable in EQ

• FEMA observations:
 – Catastrophic collapse in several locations
 – Some failures from overload on long span roof system
 – Most failures occurred at wall-to-roof connections

Source: FEMA (2012)
Structural Performance in Tornado Winds
Tilt-Up Panel Walls

• Tilt-Up Concrete Association (TCA) task force report after Joplin
 - Initial failures occurred in steel joist roof system
 - Panels themselves were very robust (were generally intact despite collapse)
 - "Tilt-Up construction played no role in the failure."
 - Recommendations:
 o Develop procedure for more predictable collapse performance
 o Establish roof system design criteria "that has ultimate failure capacities...similar to over-strength requirements for certain elements in the seismic design..."
 o Send recommendations to ICC, FEMA, Steel Deck Institute, Steel Joist Institute, and others to develop standard codes, procedures, and products

Severe Convective Storm Modeling
Challenges and Obstacles

• Highly localized, short-lived phenomena

• Large model domain coupled with high frequency makes probabilistic modeling computationally intensive
 – Most of southern Canadian provinces and entire eastern 2/3 of the United States is vulnerable to severe thunderstorms
 – Millions of years of simulation required for single location convergence

• Hail data are based on subjective reports (e.g. pea-, penny-, baseball-sized), and are mostly along roadways

• Tornado wind measurements are scarce, damage serves as a proxy for wind speed
 – Rating based on maximum damage observed, which is often a small fraction of total path area
 – Under-classification common in rural areas
 – Original intensity scale was the Fujita scale, Enhanced Fujita scale adopted in 2007 in US and 2013 in Canada
Tornado/Hail Risk
Reinsurer’s Perspective

• Treaty perspective
 – Tropical Cyclones are major driver of loss in United States for national accounts
 – Tornado/Hail exposure drives losses for regional accounts
 – Only large outbreaks or severe urban tornadoes penetrate cat treaties
 – Cedent loss experience common

• Single risk perspective
 – Damage paths of severe thunderstorms are very localized
 – Probability of direct strike by tornado VERY low
 – Direct hit by single tornado can result in a large loss, regardless of industry impact
 – Highly correlated losses over small areas
 – Cedent loss experience is scarce

RISK PERSPECTIVE MATTERS!
Modelling results

- What results to the models produce
- How do we interpret them
- Art over Science?
Sample company 1

- Subject income: US$ 125m +
- State exposure: Gulf
- Line of Business: 100% Homeowner
What results do the models produce?

What does a Tornado Hail Exceedance Probability curve actually look like

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 yrs</td>
<td>29,434,411</td>
<td>139,136,506</td>
</tr>
<tr>
<td>100 yrs</td>
<td>21,511,483</td>
<td>92,203,743</td>
</tr>
<tr>
<td>50 yrs</td>
<td>16,430,800</td>
<td>76,290,532</td>
</tr>
<tr>
<td>25 yrs</td>
<td>12,886,620</td>
<td>66,236,499</td>
</tr>
<tr>
<td>10 yrs</td>
<td>9,316,345</td>
<td>28,162,146</td>
</tr>
<tr>
<td>5 yrs</td>
<td>6,950,018</td>
<td>17,591,706</td>
</tr>
<tr>
<td>AAL</td>
<td>16,538,553</td>
<td>30,175,009</td>
</tr>
</tbody>
</table>

- **Actual Tornado Hail Loss experience**
 - 2015: 18.04m, 5.47m, 3.24m
 - 2014: 16.01m, 10.16m, 8.49m
 - 2013: 16.87m, 10.01m, 9.15m
 - 2012: 20.28m, 5.35m, 2.36m
 - 2011: 13.80m, 3.45m, 2.55m
 - 2010: 3.64m, 2.59m, 1.67m
 - 2009: 10.80m, 6.82m, 4.33m
 - 2008: 6.012m, 4.24m, 2.44m
Observations

• Model 1
 • looks very light throughout curve
 • 10 yr return period is just 9.31m yet company has incurred 9 events exceeding that number in past 8 years

• Model 2
 • looks appropriate up to the 10 year period - 10 yr return period is 28.16m and largest loss in period is 20.28m
 • How credible is curve excess of 10 years?? – the 25 year return number infers a very steep increase in expected loss at $66.23m
 • Much higher losses reflected at higher return periods
Possible actions

• Blend the models?
• Might make the upper return period numbers reflect a reasonable number
 • 250 year return period number would be $84.50m
 • However - 10 year RP number would be just $18.5m – still looks light

• Ignore model 2 and load model 1 by how much?

 • Load the whole curve by 250% ?
 • 10 year return period loss is $23.29m
 • 250 year return period number $73.58m
Conclusion

• Loading the whole curve produced by model 1 by a factor of 250% gives us a viewpoint which seems to match our knowledge of the company and their recent experience.

• Company purchases 160m of vertical protection
 – close to a 250 return period event for Hurricane
 – excess of a 250 return period (no matter what model) event for TH
Sample company 2

- Subject income: US$ 275 m +
- State exposure: Upper Mid West
- Line of Business: 85% Homeowner
 10% Commercial,
 5% Auto
What results do the models produce?

What does a Tornado Hail Exceedance Probability curve actually look like

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 yrs</td>
<td>94,685,085</td>
<td>140,074,397</td>
</tr>
<tr>
<td>100 yrs</td>
<td>66,192,960</td>
<td>105,011,783</td>
</tr>
<tr>
<td>50 yrs</td>
<td>48,131,517</td>
<td>72,191,260</td>
</tr>
<tr>
<td>25 yrs</td>
<td>33,179,415</td>
<td>55,470,609</td>
</tr>
<tr>
<td>10 yrs</td>
<td>20,711,948</td>
<td>38,049,550</td>
</tr>
<tr>
<td>5 yrs</td>
<td>14,322,457</td>
<td>28,295,282</td>
</tr>
<tr>
<td>AAL</td>
<td>20,572,365</td>
<td>26,165,192</td>
</tr>
</tbody>
</table>

- Actual Tornado Hail Loss experience
 - 2015 12.35m, 8.84m, 8.06m
 - 2014 24.96m, 17.99m, 9.22m
 - 2013 10.74m, 6.61m, 4.95m
 - 2012 8.71m, 4.41m
 - 2011 10.00m, 4.12m
 - 2010 18.65m, 6.51m,
 - 2009 nil
 - 2008 11.34m, 8.29m,
Observations

• Model 1
 • Once again lighter through curve
 • closer to experience -10 yr return period is 20.70m with only one loss greater than in within the period.

• Model 2
 • Appears penal when compared to experience - 10 yr return period is 38.04m and largest loss in period is 24.98m
 • Once again the curve accelerates steeply - the 25 year return number infers an RP loss of 55.45m
Possible actions

- Load a model or blend them?
- Blending 50/50 might make sense – or you may wish to load model 1 by 50%

<table>
<thead>
<tr>
<th></th>
<th>50/50</th>
<th>Model 1 * 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>117.37 m</td>
<td>142.02 m</td>
</tr>
<tr>
<td>100</td>
<td>85.50 m</td>
<td>99.28 m</td>
</tr>
<tr>
<td>50</td>
<td>60.15 m</td>
<td>72.19 m</td>
</tr>
<tr>
<td>25</td>
<td>44.32 m</td>
<td>49.75 m</td>
</tr>
<tr>
<td>10</td>
<td>29.38 m</td>
<td>31.06 m</td>
</tr>
<tr>
<td>5</td>
<td>21.30 m</td>
<td>21.49 m</td>
</tr>
</tbody>
</table>
Conclusion

• Either approach produces a return period result up to 10 years which makes sense but blending does provide some relief to the higher return period loss estimates.

• Company purchases 135m of vertical protection
 – just in excess of a 250 return period event for TH on a blended approach
 – Just within the 250 return period for TH on a loaded approach

In this instance a blended approach may be considered appropriate
Sample company 3

- Subject income: US$ 700m
- State exposure: Broad Central and Mid West Footprint
- Line of Business: 90% Homeowner, 2% Commercial, 8% Auto
What results do the models produce?

What does a Tornado Hail Exceedance Probability curve actually look like

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 yrs</td>
<td>278,412,245</td>
<td>339,991,249</td>
</tr>
<tr>
<td>100 yrs</td>
<td>209,235,520</td>
<td>251,986,847</td>
</tr>
<tr>
<td>50 yrs</td>
<td>169,945,778</td>
<td>196,837,394</td>
</tr>
<tr>
<td>25 yrs</td>
<td>135,261,749</td>
<td>144,661,308</td>
</tr>
<tr>
<td>10 yrs</td>
<td>93,780,417</td>
<td>93,745,562</td>
</tr>
<tr>
<td>5 yrs</td>
<td>66,255,199</td>
<td>65,866,201</td>
</tr>
<tr>
<td>AAL</td>
<td>162,336,269</td>
<td>143,583,367</td>
</tr>
</tbody>
</table>

- Actual Tornado Hail Loss experience
 - 2015 12.35m, 8.84m, 8.06m
 - 2014 22.41m, 19.37m, 16.19m
 - 2013 67.32m, 27.96m, 22.86m
 - 2012 41.67m, 36.96m, 29.00m
 - 2011 101.27m, 36.63m, 30.52m
 - 2010 41.56m, 20.71m
 - 2009 29.60m, 23.17m, 23.09m
 - 2008 60.61m, 17.08m, 16.56m
Observations

• Both models far closer together

• Both models reflect reasonable losses vs experience for period

• 5yr losses of $65m and 10yr loss of $93m

• Two 60m losses and one loss Xs 100m within period

• Standard loadings for growth and ALAE should be applied, no need to further manipulate model curves

• Slight difference at high return periods
Conclusion

• Overall both models produce credible curves

• You may wish to blend the two to get a consensus view at the higher return periods.

• Selecting one curve over another is justifiable

• The much larger footprint and exposure base produced results far closer in agreement from the two models.
Thank you
©2016 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivatives of this presentation or to use it for commercial or other public purposes without the prior written permission of Swiss Re.

This presentation is for information purposes only and contains non-binding indications as well as personal judgement. It does not contain any recommendation, advice, solicitation, offer or commitment to effect any transaction or to conclude any legal act. Swiss Re makes no warranties or representations as to this presentation’s accuracy, completeness, timeliness or suitability for a particular purpose. Anyone who interprets and employs this presentation shall do so at his or her own risk without relying on it in isolation.

In no event shall Swiss Re or any of its affiliates be liable for any loss or damages of any kind, including any direct, indirect or consequential damages, arising out of or in connection with the use of this presentation.